407 research outputs found

    Critical Droplets and Phase Transitions in Two Dimensions

    Full text link
    In two space dimensions, the percolation point of the pure-site clusters of the Ising model coincides with the critical point T_c of the thermal transition and the percolation exponents belong to a special universality class. By introducing a bond probability p_B<1, the corresponding site-bond clusters keep on percolating at T_c and the exponents do not change, until p_B=p_CK=1-exp(-2J/kT): for this special expression of the bond weight the critical percolation exponents switch to the 2D Ising universality class. We show here that the result is valid for a wide class of bidimensional models with a continuous magnetization transition: there is a critical bond probability p_c such that, for any p_B>=p_c, the onset of percolation of the site-bond clusters coincides with the critical point of the thermal transition. The percolation exponents are the same for p_c<p_B<=1 but, for p_B=p_c, they suddenly change to the thermal exponents, so that the corresponding clusters are critical droplets of the phase transition. Our result is based on Monte Carlo simulations of various systems near criticality.Comment: Final version for publication, minor changes, figures adde

    Exact sampling from non-attractive distributions using summary states

    Full text link
    Propp and Wilson's method of coupling from the past allows one to efficiently generate exact samples from attractive statistical distributions (e.g., the ferromagnetic Ising model). This method may be generalized to non-attractive distributions by the use of summary states, as first described by Huber. Using this method, we present exact samples from a frustrated antiferromagnetic triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss the advantages and limitations of the method of summary states for practical sampling, paying particular attention to the slowing down of the algorithm at low temperature. In particular, we show that such a slowing down can occur in the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at http://wol.ra.phy.cam.ac.uk/mackay/exac

    Extended Defects in the Potts-Percolation Model of a Solid: Renormalization Group and Monte Carlo Analysis

    Get PDF
    We extend the model of a 2dd solid to include a line of defects. Neighboring atoms on the defect line are connected by ?springs? of different strength and different cohesive energy with respect to the rest of the system. Using the Migdal-Kadanoff renormalization group we show that the elastic energy is an irrelevant field at the bulk critical point. For zero elastic energy this model reduces to the Potts model. By using Monte Carlo simulations of the 3- and 4-state Potts model on a square lattice with a line of defects, we confirm the renormalization-group prediction that for a defect interaction larger than the bulk interaction the order parameter of the defect line changes discontinuously while the defect energy varies continuously as a function of temperature at the bulk critical temperature.Comment: 13 figures, 17 page

    Predictions of bond percolation thresholds for the kagom\'e and Archimedean (3,122)(3,12^2) lattices

    Full text link
    Here we show how the recent exact determination of the bond percolation threshold for the martini lattice can be used to provide approximations to the unsolved kagom\'e and (3,12^2) lattices. We present two different methods, one of which provides an approximation to the inhomogeneous kagom\'e and (3,12^2) bond problems, and the other gives estimates of pcp_c for the homogeneous kagom\'e (0.5244088...) and (3,12^2) (0.7404212...) problems that respectively agree with numerical results to five and six significant figures.Comment: 4 pages, 5 figure

    Microcanonical cluster algorithms

    Full text link
    I propose a numerical simulation algorithm for statistical systems which combines a microcanonical transfer of energy with global changes in clusters of spins. The advantages of the cluster approach near a critical point augment the speed increases associated with multi-spin coding in the microcanonical approach. The method also provides a limited ability to tune the average cluster size.Comment: 10 page

    Potts-Percolation-Gauss Model of a Solid

    Full text link
    We study a statistical mechanics model of a solid. Neighboring atoms are connected by Hookian springs. If the energy is larger than a threshold the "spring" is more likely to fail, while if the energy is lower than the threshold the spring is more likely to be alive. The phase diagram and thermodynamic quantities, such as free energy, numbers of bonds and clusters, and their fluctuations, are determined using renormalization-group and Monte-Carlo techniques.Comment: 10 pages, 12 figure

    Rejection-free Geometric Cluster Algorithm for Complex Fluids

    Full text link
    We present a novel, generally applicable Monte Carlo algorithm for the simulation of fluid systems. Geometric transformations are used to identify clusters of particles in such a manner that every cluster move is accepted, irrespective of the nature of the pair interactions. The rejection-free and non-local nature of the algorithm make it particularly suitable for the efficient simulation of complex fluids with components of widely varying size, such as colloidal mixtures. Compared to conventional simulation algorithms, typical efficiency improvements amount to several orders of magnitude

    Critical slowing down in polynomial time algorithms

    Full text link
    Combinatorial optimization algorithms which compute exact ground state configurations in disordered magnets are seen to exhibit critical slowing down at zero temperature phase transitions. Using arguments based on the physical picture of the model, including vanishing stiffness on scales beyond the correlation length and the ground state degeneracy, the number of operations carried out by one such algorithm, the push-relabel algorithm for the random field Ising model, can be estimated. Some scaling can also be predicted for the 2D spin glass.Comment: 4 pp., 3 fig

    Percolation on the average and spontaneous magnetization for q-states Potts model on graph

    Full text link
    We prove that the q-states Potts model on graph is spontaneously magnetized at finite temperature if and only if the graph presents percolation on the average. Percolation on the average is a combinatorial problem defined by averaging over all the sites of the graph the probability of belonging to a cluster of a given size. In the paper we obtain an inequality between this average probability and the average magnetization, which is a typical extensive function describing the thermodynamic behaviour of the model

    Center clusters in the Yang-Mills vacuum

    Full text link
    Properties of local Polyakov loops for SU(2) and SU(3) lattice gauge theory at finite temperature are analyzed. We show that spatial clusters can be identified where the local Polyakov loops have values close to the same center element. For a suitable definition of these clusters the deconfinement transition can be characterized by the onset of percolation in one of the center sectors. The analysis is repeated for different resolution scales of the lattice and we argue that the center clusters have a continuum limit.Comment: Table added. Final version to appear in JHE
    • …
    corecore